Saturday, January 9, 2021

Oldies But Goodies - Missing Data Part 4: Many-valued Logics and NULL Part 1

Note: To demonstrate the correctness and stability of a sound theoretical foundation relative to the industry's fad-driven "cookbook" practices, I am re-publishing as "Oldies But Goodies" material from the old DBDebunk.com (2000-06), so that you can judge for yourself how well my arguments hold up and whether the industry has progressed beyond the misconceptions those arguments were intended to dispel. I may break long pieces into multiple posts, revise, and/or add comments and references.

In response to a LinkedIn exchange we continue the series about missing data, NULL and the RDM. In Parts 1,2 and 3 we re-published a past exchange between myself and Hugh Darwen on the pros and cons of our relational solution to missing data vs. Hugh's "horizontal decomposition".

Here we re-publish my debunking of reactions to an article of mine exhibiting the common confusions evoked by NULL.

Friday, January 1, 2021

Oldies But Goodies: Database Design and Guaranteed Correctness Part 2

Note: This is a re-write of an earlier post (which now links here), to bring it into line with the current understanding of the RDM derived from McGoveran formalization and interpretation of Codd's work[1]. Reference [9] is also an important re-write and is recommended pre-requisite for this post.

Continued from Part 1

 “The term database design can be used to describe many different parts of the design of an overall database system. Principally, and most correctly, it can be thought of as the logical design of the base data structures used to store the data. In the relational model these are the tables and views ... However, the term database design could also be used to apply to the overall process of designing, not just the base data structures, but also the forms and queries used as part of the overall database application within the database management system(DBMS). The process of doing database design generally consists of a number of steps which will be carried out by the database designer. Usually, the designer must:

  • Determine the data to be stored in the database.
  • Determine the relationships between the different data elements.
  • Superimpose a logical structure upon the data on the basis of these relationships.
Within the relational model the final step above can generally be broken down into two further steps, that of determining the grouping of information within the system, generally determining what are the basic objects about which information is being stored, and then determining the relationships between these groups of information, or objects.”
--What is a Relational Database, Quora.com
There is, typically, much vagueness and confusion here and instead of debunking it makes more sense to provide a rigorous description of what database design really is: formalization of a conceptual model -- expressed as business rules -- as a logical model for representation in the database using a formal data model. If the data model is the RDM, the logical model consists of relations constrained for semantic consistency with the conceptual mode, the constraints being formalizations of the business rules.

Thursday, December 24, 2020

Thursday, December 3, 2020

Oldies But Goodies - Missing Data Part 3: "Horizontal Decomposition" Part 3


Note: To demonstrate correctness and stability of a sound foundation relative to the industry's fad-driven "cookbook" practices, I am re-publishing "oldies but goodies" from the old DBDebunk (2000-06), so that you can judge for yourself how well my then arguments hold up and whether the industry has progressed beyond the misconceptions those arguments were intended to dispel. I may break long pieces into multiple posts, revise, and/or add comments and references.

In Part 1 we re-published a reader's comments on "horizontal decomposition" -- Hugh Darwen's proposal on How to Handle Missing Information without Using NULLs relative to our The Final NULL in the Coffin: A Relational Solution to Missing Data;  In Part 2 we re-published Darwen's response. Here's my reply revised for consistency with the current state of knowledge.

Friday, November 27, 2020

Oldies But Goodies - Missing Data Part 2 - "Horizontal Decomposition" Part 2


Note: To demonstrate the correctness and stability of a sound foundation relative to the industry's fad-driven "cookbook" practices, I am re-publishing "Oldies But Goodies" material from the old DBDebunk.com (2000-06), so that you can judge for yourself how well my arguments hold up and whether the industry has progressed beyond the misconceptions those arguments were intended to dispel. I may break long pieces into multiple posts, revise, and/or add comments and references.

In Part 1 we re-published a reader's response to "horizontal decomposition" -- Hugh Darwen's How to Handle Missing Information without Using NULLs  -- in comparison to our The Final NULL in the Coffin: A Relational Solution to Missing Data). Here's Hugh's response.

Sunday, November 22, 2020

Oldies But Goodies - Missing Data Part 1: "Horizontal Decomposition" Part 1

Note: To demonstrate the correctness and stability of a sound foundation relative to the industry's fad-driven "cookbook" practices, I am re-publishing as "Oldies But Goodies" material from the old DBDebunk.com (2000-06), so that you can judge for yourself how well my arguments hold up and whether the industry has progressed beyond the misconceptions those arguments were intended to dispel. I may break long pieces into multiple posts, revise, and/or add comments and references.
 

“I'm excited to share a data.world research partnership with Prof Leonid Libkin and Paolo Guagliardo from The University of Edinburgh. Our goal is to understand how NULL values are used in the real word to bridge theory and practice. Please help us by participating in a survey.”


Thus a recent announcement on LinkedIn, which triggered reactions in praise of this "much needed effort".

Sigh! SQL's NULL is a blunder unworthy of research. The commonly used "NULL value" is a contradiction in terms, indicating that industry surveys are not a path to enlightening. The real issue is, of course, missing data, which is governed by long studied and well understood logic[1,2,3,4], though apparently not in the industry and today's academia.

In 2004 we published The Final NULL in the Coffin: A Relational Solution to Missing Data (a paper revised since) that we believe is theoretically sound and, importantly, consistent with McGoveran's work re-interpreting, extending and formalizing Codd's RDM[5]. At the time it generated a series of exchanges with readers, which were posted at the old DBDebunk (2000-2006). In light of the above they warrant re-production.

I start with the first, split in three parts: In this Part 1 a reader's reaction to both our solution and Hugh Darwen's "horizontal decomposition" alternative, How to Handle Missing Information without Using NULLs; Hugh's reply is in Part 2 and mine -- re-written to bring up to date with current state of knowledge and for clarity --
is in Part 3.

Note: In a later book Darwen dedicated a chapter to a "multi-relation" approach which seems an allusion to our solution.

Thursday, October 29, 2020

Oldies But Goodies: Database Design and Guaranteed Correctness Part 1

Note: To demonstrate the correctness and stability of database designs provided by a sound foundation relative to the industry's fad-driven "cookbook" practices, I am re-publishing as "Oldies But Goodies" post from the old DBDebunk.com (2000-06), so that you can judge for yourself how well my arguments hold up and whether the industry has progressed beyond the misconceptions they were intended to dispel (I may break long pieces into multiple posts, and add comments and references).

View My Stats